Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification.
نویسندگان
چکیده
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi-walled carbon nanotubes (MWCNTs) paste electrode modified by dispersion of laccase (3%, w/w) within the optimum composite matrix (60:40%, w/w, MWCNTs and paraffin binder) showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate 4-aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 × 10(-7) to 1.15 × 10(-5) mol L(-1) using 4-aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%). The limit of detection obtained was 1.8 × 10(-7) mol L(-1) (0.04 mg kg(-1) on a fresh weight vegetable basis). The high activity and catalytic properties of the laccase-based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0 ± 0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electroanalysis were observed by the presence of pro-vitamin A, vitamins B1 and C, and glucose in the vegetable extracts. The proposed biosensor-based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
منابع مشابه
Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode
In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H)-one (DTD) and oxidized multi-walled carbon nanotubes (OCNTs) is described for determination of levodopa (LD), acetaminophen (AC) and tryptophan (Trp) by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated...
متن کاملA Sensitive Novel Approach towards the Detection of 8-Hydroxyquinoline at Anionic Surfactant Modified Carbon Nanotube Based Biosensor: A Voltammetric Study
A rapid electrochemical technique was developed to determine 8-Hydroxyquinoline (8HQ). In the current study, the anionic surfactant Sodium lauryl sulfate (SLS) was immobilized on the multi-walled carbon nanotube (MWCNT) paste surface for the fabrication of electrode to detect 8HQ in phosphate buffer solution (PBS) of pH 7.0. The response of SLS modified carbon nanotube paste electrode (SLSMCNTP...
متن کاملDirect Electrochemistry of Polyphenol Oxidase
The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH,...
متن کاملFabrication of TiO2 Hollow Spheres and its Application in Modification of Carbon Paste Electrode For Simultaneous Determination of Dopamine and Piroxicam in the Presence of Ascorbic acid
In this work we report preparation TiO2 hollow spheres and its application as an electrochemical sensor. Therefore the novel carbon paste electrode modified with TiO2 hollow spheres (TOHS), multi-walled carbon nanotubes (MWCNTs) and poly-glutamic acid (PGA) film (PGA/TOHS/MWCNTs/CPE) was used for simultaneous determination of dopamine (DA) and piroxicam (PRX) in the presence of ascorbic acid (A...
متن کاملElectrochemical Analysis of Tryptophan using a Nanostructuring Electrode with Multi-walled Carbon Nanotubes and Cetyltrimethylammonium bromide Nanocomposite
Multi-walled carbon nanotubes (MWCNTs) were immobilized on the surface of a glassy carbon electrode (GCE) in the presence of cetyltrimethylammonium bromide (CTAB) to form a MWCNTs-CTAB nanocomposite-modified electrode. The electrocatalytic response of the modified electrode towards tryptophan (Trp) was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Talanta
دوره 106 شماره
صفحات -
تاریخ انتشار 2013